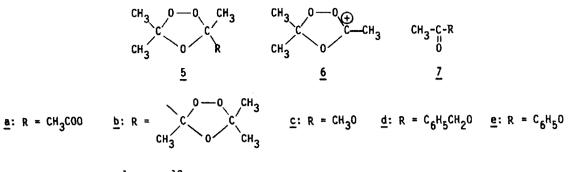

NUCLEOPHILIC SUBSTITUTIONS AT OZONIDES

Karl Griesbaum*, Willi Yolpp and Tae-Seong Huh

Engler-Bunte-Institut, Bereich Petrochemie, Universität Karlsruhe (TH), D-7500 Karlsruhe, Germany


Abstract: Reactions of 3-acetoxy-3,5,5-trimethyl-1,2,4-trioxolane (5a) with methanol, benzyl alcohol or phenol gave the corresponding ether ozonides 5c - e. Reaction of 5b with benzyl alcohol and with acetate ion gave 5d and 5a, respectively.

The known reactions of nucleophiles with ozonides 1 occur either by attack at the peroxide bridge and formation of fragments 2 and 3 or by attack at a CH-bond of the 1,2,4-trioxolane ring and formation of fragments 2 and 4^1 . Nucleophilic substitutions at the C-atoms of the 1,2,4-trioxolane system with retention of the ring are not known.

By ozonolysis of the corresponding unsaturated substrates on polyethylene, we have recently prepared ozonides $\underline{5a}^2$ and $\underline{5b}^3$. They are slowly decomposed at ca. 40 °C. From the products obtained, we have concluded that the decomposition starts by elimination of R and formation of the ozonide cation $\underline{6}^{2,4}$. In the present work, we have tried to trap $\underline{6}$ with nucleophiles with the following results: Reactions of $\underline{5a}$ with a 6-fold excess of methanol, benzyl alcohol or phenol at 40 °C in CDCl₃ and in the presence of sodium hydrogencarbonate afforded ozonides $\underline{5c}$ (62%), $\underline{5d}$ (91%) and $\underline{5e}$ (46%), respectively. Ozonide $\underline{5c}$ was isolated by distillation at room temperature and 10^{-3} torr into a receiver cooled to 0 °C; ozonides $\underline{5d}$ and $\underline{5e}$ were isolated by chromatographic separation (silica gel; n-pentane/diethyl ether 4:1). The structures of the colorless, liquid ozonides were confirmed by the ¹H- and ¹³C-NMR data (see Table), by the absence of carbonyl bands in the IR spectra and by reduction to give the acetic esters 7c, 7d and 7e, respectively.

Reaction of <u>5b</u> with excess benzyl alcohol under similar conditions provided also ozonide <u>5d</u> (58%). When the decomposition of <u>5b</u> was carried out in the absence of alcohol yet in the presence of sodium hydrogencarbonate, ozonide <u>5a</u> (50%) was obtained. This can be rationalized by cleavage of fragment R into acetone and acetate anion. The latter, in turn, traps ozonide cation 6 to give 5a.

 1 H- and 13 C-NMR Data of Ozonides 5a and 5c - 5e

A	CH3	0-0	CH3	B
A	CH ₃ C		C NR	

Chemical Shift, δ ppm

¹ H-NMR Data ^{a)}			¹³ C-NMR Data ^{b)}					
		A	В		4	В	C	D
<u>5a</u>	1.50	1.58	1.95	19.56	56 21.99 22.71	111.58	119.01	
5c	1.50	1.59	1.65	21.74	22.64	24.52	109.88	119.98
5d	1.53	1.61	1.72	22.14	22.34	24.56	110.13	119.96
<u>5e</u>	1.34	1.47	1.73	20.80	22.30	24.66	110.67	120.07

 $a^{(a)}$ s-signals $b^{(a)}$ q-signals for A- and B-atoms; s-signals for C- and D-atoms.

The first successful substitutions at ozonide rings in this work open a new route for the preparation of ozonides. This is particularly suitable in cases where other methods fail. Thus, attempts to prepare 3,5,5-trisubstituted 3-alkoxy- or 3-phenoxy-1,2,4-trioxolanes by ozonolysis of the corresponding enol ethers have been unsuccessful, and ozonides 5c - 5e are the first representatives of permethylated enol ether ozonides.

References

- P.S. Bailey: Ozonation in Organic Chemistry, Vol. 1, Academic Press, New York 1978, p. 131 ff.
- 2. K. Griesbaum, W. Volpp, T.S. Huh, I. Jung, Chem. Ber., in print.
- K. Griesbaum, W. Volpp, Angew. Chem. <u>98</u>, 108 (1986), <u>Angew. Chem. Int. Ed. Engl. <u>25</u>, 81 (1986).
 </u>
- 4. K. Griesbaum, W. Volpp, R. Greinert, H.-J. Greunig, J. Schmid, H. Henke, <u>J. Org. Chem.</u>, in print.

(Received in Germany 8 December 1988)